1. Multiple Choice A One correct answer each.
(a) State the order and the linearity or type of nonlinearity for the following PDE: $\left(u+u_{x x}+u_{y y}\right)^{19}=u_{y}+2022 u$.
\bigcirc First order, linear.First order, nonlinear. It is not quasilinear.Second order, nonlinear. It is quasilinear.Second order, nonlinear. It is not quasilinear.
(b) State the order and the linearity or type of nonlinearity for the following PDE: $\left(x^{2}+1\right)\left(u_{x x x}+\sinh (3 y) u_{x}\right)=\ln \left(x^{2}+1\right) u$.

Second order, nonlinear. It is quasilinear.Third order, nonlinear. It is quasilinear.Third order, linear.Second order, linear.
(c) The PDE $e^{x+y} u_{x x}+2 e^{x} u_{x y}-\left(e^{y-x}-2\right) u_{y y}+7 u=\cos \left(x^{2}\right)$, isnowhere hyperbolic.parabolic when $x \neq y$.parabolic when $x=y$.everywhere elliptic.
(d) For which function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the following second order linear PDE

$$
\frac{1}{4} f(x) u_{x x}+u_{x y}+f(x) u_{y y}-f^{2}(x) y u_{y}=u
$$

everywhere elliptic?
$\bigcirc(x)=\sin (x)$.
$f(x)=\sin (x)+3$.
$f(x)=\frac{1}{2} \sin (x)$.
$\bigcirc f(x)=1$.
2. Multiple Choice B One correct answer each.
(a) By the transversality condition, the PDE

$$
\begin{cases}(u-y) u_{x}+(x-y) u_{y}=\ln \left(u^{2}+1\right), & (x, y) \in \mathbb{R}^{2} \\ u(0, y)=y^{2}, & y \in \mathbb{R}\end{cases}
$$

admitsa global solution.a local solution for $(x, y) \neq(0,-1)$.a local solution for $(x, y) \notin\{(0,0),(0,1)\}$.no solutions at all.
(b) Let u be the weak solution of

$$
\begin{cases}u_{y}+\left(\alpha u-u^{2}\right) u_{x}=0, & \text { in }(x, y) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=1, & \text { if } x<0, \\ u(x, 0)=0, & \text { if } x \geq 0\end{cases}
$$

obtained by imposing the Rankine-Hugoniot condition, where $\alpha \in \mathbb{R}$ is some given constant. Then, u satisfies the entropy condition if

$$
\bigcirc \alpha>\frac{4}{3}
$$$\alpha<\frac{4}{3}$.$\alpha>-\frac{2}{3}$.

$\alpha<\frac{2}{3}$.
(c) Denote with $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ the (open) unit disk. For which value of c is the PDE

$$
\begin{cases}\Delta u=y^{2}+c, & \text { in } D, \\ \partial_{\nu} u=x, & \text { on } \partial D\end{cases}
$$

solvable?$c=\frac{1}{2}$.$c=0$.$c=-\frac{1}{4}$.$c=-\frac{\pi}{8}$.
3. Boxes Fill the white boxes with the final answer. Do not include your computations.
(a) Let $\alpha \in \mathbb{R}$ be a constant. Then, the function

$$
u(x, y)= \begin{cases}1, & \text { if } x \geq \alpha y \\ 0, & \text { if } x<\alpha y\end{cases}
$$

is a weak solution of the conservation law

$$
\begin{cases}u_{y}+\left(2 u+u^{3}\right) u_{x}=0, & (x, y) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=1, & x \geq 0 \\ u(x, 0)=0, & x<0\end{cases}
$$

if α is equal to

(b) Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0, & \text { in } D \\ u=\frac{2 x+1}{x^{2}+y^{2}+1} & \text { on } \partial D\end{cases}
$$

where the domain D is the anulus defined by $D:=\left\{(x, y) \in \mathbb{R}^{2}: 1<\sqrt{x^{2}+y^{2}}<2\right\}$. The maximum of u in D is equal to

(c) Let $u:[0,1] \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution of the heat equation

$$
\begin{cases}u_{t}-u_{x x}=0, & \text { in }(0,1) \times(0,+\infty) \\ u(0, t)=u(1, t)=e^{-t} \sin (t), & \text { for } t \geq 0 \\ u(x, 0)=\sin (\pi x), & \text { for } x \in[0,1]\end{cases}
$$

What is the maximum of u ?

(d) Consider the one dimensional, homogeneous wave equation

$$
\begin{cases}u_{t t}-4 u_{x x}=0, & (x, t) \in \mathbb{R}^{2} \\ u(x, 0)=g(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=1, & x \in \mathbb{R}\end{cases}
$$

where $g(x)=\ln \left(x^{2}+1\right)$ if $|x|<9$ and $g(x)=0$ otherwise. Where are the discontinuities of u ?
\square
4. Consider the following PDE in the unit square

$$
\begin{cases}\Delta u(x, y)=0, & (x, y) \in[0,1] \times[0,1] \\ u_{y}(x, 0)=\alpha, & x \in[0,1] \\ u_{y}(x, 1)=0, & x \in[0,1] \\ u_{x}(0, y)=0, & y \in[0,1] \\ u_{x}(1, y)=\alpha^{2}, & y \in[0,1]\end{cases}
$$

where $\alpha \in \mathbb{R}$.
(a) Find all values of $\alpha \in \mathbb{R}$ for which the above PDE is solvable.
(b) How many distinct solutions does the above PDE admit? Justify your answer.
(c) Find all solutions of the above problem.

If you were not able to solve point (a), set $\alpha=1$.
(d) Show that the following system

$$
\begin{cases}\Delta u(x, y)=1, & (x, u) \in[0,1] \times[0,1] \\ u_{y}(x, 0)=1, & x \in[0,1] \\ u_{y}(x, 1)=0, & x \in[0,1] \\ u_{x}(0, y)=0, & y \in[0,1] \\ u_{x}(1, y)=1, & y \in[0,1]\end{cases}
$$

admits no solution $u \in C^{2}([0,1] \times[0,1])$.
5. Consider the PDE

$$
\begin{cases}u_{y}+\left(u^{3}+1\right) u_{x}=0, & x \in \mathbb{R}, y>0 \\ u(x, 0)=h(x), & x \in \mathbb{R}\end{cases}
$$

where $h(x)=1$ if $x \leq 0, h(x)=(1-x)^{\frac{1}{3}}$ if $0<x<1$ and $h(x)=0$ if $x \geq 1$.
(a) Identify the flux function.
(b) Check the transversality condition: what can we say about the existence of classical solutions? (is it global/local, unique/not unique?).
(c) Compute the critical time of existence y_{c}.
(d) Solve the above conservation law using the Method of Characteristics.
(e) Find a weak solution everywhere defined.
6. Consider the disk $D:=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<1\right\}$. Let $u=u(x, y)$ be a function twice differentiable in D and continuous in \bar{D}, solving

$$
\begin{cases}\Delta u(x, y)=0, & \text { in } D \\ u(x, y)=g(x, y), & \text { on } \partial D\end{cases}
$$

for some given function g.
(a) Suppose $g(x, y)=x^{2}+y^{2}+x y$.
i. Compute $u(0,0)$.
ii. Compute $\max _{(x, y) \in \bar{D}} u(x, y)$ and $\min _{(x, y) \in \bar{D}} u(x, y)$.

Hint: recall the trigonometric identity: $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$.
(b) Suppose now that g is any smooth function such that $g(x, y) \leq x^{2}-y^{2}+y$.
i. Show that $u\left(\frac{1}{2}, 0\right) \leq \frac{1}{4}$.
ii. Show that if $u\left(\frac{1}{2}, 0\right)=\frac{1}{4}$, then $g(x, y)=x^{2}-y^{2}+y$.

Hint: the function $x^{2}-y^{2}+y$ is harmonic.

